This course builds upon and extends the DevOps practice prevalent in software development to build, train, and deploy machine learning (ML) models. The course stresses the importance of data, model, and code to successful ML deployments. It will demonstrate the use of tools, automation, processes, and teamwork in addressing the challenges associated with handoffs between data engineers, data scientists, software developers, and operations. The course will also discuss the use of tools and processes to monitor and take action when the model prediction in production starts to drift from agreed-upon key performance indicators. The instructor will encourage the participants in this course to build an MLOps action plan for their organization through daily reflection of lesson and lab content, and through conversations with peers and instructors.
Required
Recommended
This course is for individuals who seek an understanding of how to manage, optimize, and predict costs as you run workloads on AWS. You learn how to implement architectural best practices, explore cost optimization strategies, and design patterns to help you architect ...
In this course, you will learn best practices for designing and using cloud-based video workflows. It covers important concepts related to video processing and delivery, the variables that can impact migration decisions, and real-world examples of hybrid and cloud use cases for ...
This course explores how to the use of the iterative machine learning (ML) process pipeline to solve a real business problem in a project-based learning environment. Students will learn about each phase of the process pipeline from instructor presentations and demonstrations ...
This course teaches experienced developers how to programmatically interact with AWS services to build web solutions. It guides you through a high-level architectural discussion on resource selection and dives deep into using the AWS Software Development Kits (AWS SDKs) and ...